Precursor stoichiometry in CH₃NH₃PbBr₃. Structure-property relationship and LED implication

> <u>Giulia Longo</u>, Michele Sessolo and H.J.Bolink giulia.longo@uv.es

Institiuto de Ciencia Molecular (ICMol) University of Valencia

Organic-inorganic cubic perovskites

L- Gil-Escrig, G. Longo, A. Pertegas, C. Roldan-Carmona, A. Soriano, M. Sessolo and H. J. Bolink, *Chem. Commun*, 2015, **51** K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov and H. J. Bolink, *Sci. Rep.*, 2014, **4**.

Analyzed samples

■Vniver§itatÿīdValència■

Stoichiometric

Non-stoichiometric

 $CH_3NH_3:PbBr_2 = 1$ $CH_3NH_3:PbBr_2 = 3$

Single step deposition technique

Powder diffraction analysis

■Vniver§itatÿīdValència■

Polycristalline powders precipitated from concentrated solutions

Precipitating agent: chlorobenzene

Dryed at 75° for 48 hours, and then annealed at 90°C for 3h. Sample 3:1 was further annealed at 115°C for 24 hours

Solid state C¹³ NMR analysis

freeMA/Pb-MA= 1.38 Even after thermal treatment (115°C 24h), the same ratio between bounded and unbounded methilammonium is kept treatment (90°C 3 hours)

Device structure

Vniver§itatÿīdValència

3-1 OLED device

1-1 OLED device

Morphological study

Vniver§itatÿ₫València**___**

MA/Pb =3

Relationship of performances and structure

Optical behavior

Electroluminescence and photoluminescence

Vniver§itatÿdValència

Excitation wavelength: 365nm

Trap states filling

No photoluminescence

Photoluminescence at 527 nm

Trap assisted recombination

-Vniver§itatÿ́ dValència

Conclusions

■Vniver§itatÿdValència■

- Precursor stoichiometry of CH₃NH₃PbBr₃ have a fundamental role in the optoelectronic properties and in film formation
- An excess of methylammonium affects the perovskite bandgap
- An excess of methylammonium bromide favors the surface coverage and the creation of a compact and uniform perovskite layer, suitable for optoelectronic application
- The excess of MABr passivates the trapping states present on the crystals allowing photoluminescence even at low excitation intensities
- The electroluminescence in the device likely derives from trap assisted recombination processes.

Acknowledgments

Dr. Henk J. Bolink Dr. Michele Sessolo Dr. Maria Monrabal-Capilla Lidon Gil-Escrig Laura Martinez-Sarti Mª Cristina Momblona Rincor David Forgacs Enrico Bandiello Antonio Pertegas-Ojeda Jorge Pablo Avila-Gomez Jorge Ferrando-Garcia Araceli Miquel-Sempere

Thank you for your attention!

Precursor stoichiometry in CH₃NH₃PbBr₃. Structure-property relationship and LED implication

> <u>Giulia Longo</u>, Michele Sessolo and H.J.Bolink giulia.longo@uv.es

Institiuto de Ciencia Molecular (ICMol) University of Valencia

